Part Number Hot Search : 
P6KE16 2SC504 SLD105VL UPC1470H DM74L LC420W 2SB767S CPZ18
Product Description
Full Text Search
 

To Download Q68000-A8882 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Datasheet
* Power amplifier for DECT and PCS application * Fully integrated 3 stage amplifier * Operating voltage range: 2.7 to 6 V * Overall power added efficiency 35 % * Input matched to 50 , simple output match
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code (taped)
Package 1)
CGY 180
CGY 180
Q68000-A8882
MW 12
Maximum ratings Characteristics Positive supply voltage Negative supply voltage 2) Supply current Maximum input power Channel temperature Storage temperature Total power dissipation (Ts < 81 C)
Ts: Temperature at soldering point
Symbol VD VG
max. Value 8 -8 1.2 10 150 -55...+150 2.3
Unit V V A dBm C C W
ID Pin,max TCh Tstg Ptot PPulse
Pulse peak power Thermal Resistance Channel-soldering point
9.5
W
RthChS
30
K/W
1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines 2) VG = -8V only in combination with VTR = 0V; VG = -6V while VTR 0V
Siemens Aktiengesellschaft
pg. 1/15
21.02.96 HL EH PD 21
GaAs MMIC
Functional Block Diagram:
VG
CGY 180
_________________________________________________________________________________________________________
(2)
VD1 (8)
VD2
(9)
VD3 (11)
VTR (1)
Control circuit
Pin (7)
Pout
(11)
GND1 (6)
GND2 (3,4,5,10)
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 VTR VG GND2 GND2 GND2 GND1 RFin VD1 VD2 GND2
Configuration Control voltage for transmit (0V) / receive (open) mode Negative voltage at control circuit (-4V...-8V) RF and DC ground of the 2nd and 3rd stage RF and DC ground of the 2nd and 3rd stage RF and DC ground of the 2nd and 3rd stage RF and DC ground of the 1st stage RF input power Pos. drain voltage of the 1st stage Pos. drain voltage of the 2nd stage RF and DC ground of the 2nd and 3rd stage
VD3, Pout Pos. drain voltage of the 3rd stage, RF output power n.c.
Siemens Aktiengesellschaft
pg. 2/15
21.02.96 HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Control circuit: VG supply: Negative voltage (stabilization is not necessary) in the range of -4V...-8V. VTR supply: During transmit operation: 0V., negative supply current 1mA...2.5mA. During receive operation: not connected (shut off mode) The operation current ID of CGY 180 is adjusted by the internal control circuit.
DC characteristics Characteristics
Drain current
Symbol Conditions
VD=3V, VG=0V, VTR n.c.
min
150 150 675
typ
220 220 1000 450 100 100 500 -2.8
max
320 320 1440 650 140 140 630 -1.8
Unit
mA mA mA mA mS mS mS V
stage 1 IDSS1 stage 2 IDSS2 stage 3 IDSS3
Drain current with active current control Transconductance (stage 1 - 3) Pinch off voltage
ID gfs1 gfs2 gfs3 Vp
VD=3V, VG=-4V, VTR=0V
290 80 80 360 -3.8
VD=3V, ID=90mA VD=3V, ID=90mA VD=3V, ID=400mA VD=3V, ID<170A (all stages)
Siemens Aktiengesellschaft
pg. 3/15
21.02.96 HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Electrical characteristics (TA = 25C , f=1.89 GHz, ZS=ZL=50 Ohm, VD=3.0V, VG=-4V, VTR pin connected to ground, unless otherwise specified) Characteristics Supply current
Pin = 0 dBm
Symbol
min 28 25.5 30 -
typ 450 1 50 10 30 27 30 35 2:1 33.5 38.5
max 2.5 180 50 -28 -25 -25 -22 2.5 : 1 -
Unit mA mA A A dB dBm dBm % dBc dBc dBm dBm -
IDD IG ID IG G Po Po
-
Negative supply current
(transmit operation)
Shut-off current
VTR n.c.
Negative supply current
(shut off mode, VTR pin n.c.)
Gain
Pin = -20dBm
Output Power
Pin = 0 dBm
Output Power
VD=5V; Pin = 0 dBm
Overall Power added Efficiency
Pin = 0 dBm
Harmonics (Pin =0dBm)
VD=3V; (Pout =27dBm) Harmonics (Pin =0dBm) VD=5V; (Pout =30dBm)
2f0 3f0 2f0 3f0
Input VSWR VD=3V; Third order intercept point
VD=3V; pulsed with a duty cycle of 10%; f1=1.8900GHz; f2=1.891728GHz;
IP3 IP3 -
Third order intercept point
VD=4.8V; pulsed with a duty cycle of 10%; f1=1.8900GHz; f2=1.891728GHz;
Load mismatch
Pin=0dBm, VD6V, ZS=50 Ohm, Load VSWR = 20:1 for all phase, VTR=0V, VG=-4V
No module damage for 10 sec.
Stability
Pin=0dBm, VD=2-7V, ZS=50 Ohm, Load VSWR = 3:1 for all phase, VTR=0V, VG=-4V
-
All spurious output more than 60 dB below desired signal level
-
Siemens Aktiengesellschaft
pg. 4/15
21.02.96 HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
DC - characteristics Input characteristics - typical measured values of stage 1 and 2 , VD1 or VD2=3V
0,26
low current medium current high current
0,24 0,22 0,2 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0
-4
-3,8
-3,6
-3,4
-3,2
-3
-2,8
-2,6
-2,4
-2,2
-2 VG[V]
-1,8
-1,6
-1,4
-1,2
-1
-0,8
-0,6
-0,4
-0,2
0
Output characteristics - typical measured values of stage 1 and 2
0,22 0V
0,2
0,18
-0.2V -0.3V
0,16
-0.5V -0.7V -0.8V
0,14
ID[A]
0,12
-1.0V -1.2V -1.3V
0,1
0,08 -1.5V 0,06 -1.7V -1.9V -2.1V 0,02 -2.3V -2.5V 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6 VD[V]
0,04
Siemens Aktiengesellschaft
pg. 5/15
21.02.96 HL EH PD 21
ID[A]
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Input characteristics - typical measured values of stage 3, VD3 = 3V
1,3
low current medium current high current
1,2 1,1 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0
-4
-3,8
-3,6
-3,4
-3,2
-3
-2,8
-2,6
-2,4
-2,2
-2 VG[V]
-1,8
-1,6
-1,4
-1,2
-1
-0,8
-0,6
-0,4
-0,2
0
Output characteristics - typical measured values of stage 3
1,1 0V 1 -0.1V -0.2V 0,9 -0.3V 0,8 -0.4V -0.6V 0,7 -0.7V -0.9V -1.1V 0,5 -1.3V 0,4 -1.5V 0,3 -1.7V -1.9V -2.1V 0,1 -2.3V -2.5V 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6 VD[V]
0,6 ID[A]
0,2
Siemens Aktiengesellschaft
pg. 6/15
21.02.96 HL EH PD 21
ID[A]
GaAs MMIC
Output power and power added efficiency pulsed mode: ton=1ms, duty cycle 10%
CGY 180
_________________________________________________________________________________________________________
Pout and PAE vs. Pin
f = 1.89 GHz , VD = 3 V, VG=-4V, VTR=0V
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 36 34
Pout [dBm] PAE [%]
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
Pout[dBm]
Pin [dBm]
Pout and PAE vs. Pin
f = 1.89 GHz , VD = 5 V, VG=-4V, VTR=0V
45 40 35
Pout [dBm] PAE [%]
30 25 20 15 10 5 0 -20 -15 -10 -5 0 5 10 PAE [%] Pout [dBm]
Pin [dBm]
Siemens Aktiengesellschaft
pg. 7/15
21.02.96 HL EH PD 21
PAE [%]
GaAs MMIC
Gain vs. frequency
VG=-4V, VTR=0V
CGY 180
_________________________________________________________________________________________________________
3V Pin=0dBm
5V Pin=0dBm
3V Pin=-20dBm
5V Pin=-20dBm
GAIN vs. DRAIN VOLTAGE f=1.89 GHz, VD=3V, VG=-4V, VTR=0V
33 32 31 Gain [dB] 30 29 28 27 26 25 2 3 4 VD [V] 5 6 Gain [dB] Pin= 0dBm Gain [dB] Pin =-20dBm
Siemens Aktiengesellschaft
pg. 8/15
21.02.96 HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Output power control vs. VTR
35 700
30
600
25
500
Pout [dBm]
Id [mA]
20
400
Pout (Vd=4.5V) [dBm] Pout (Vd=3V) [dBm] ID (Vd=4.5V) [mA]
15
300
10
200
ID (Vd=3V) [mA]
5
100
0 0 0,5 1 -VTR [V] 1,5 2
0
Total Power Dissipation Ptot=f(TS)
Siemens Aktiengesellschaft
pg. 9/15
21.02.96 HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Permissible pulse load Ptot_max/Ptot_DC = f(t_p)
Siemens Aktiengesellschaft
pg. 10/15
21.02.96 HL EH PD 21
GaAs MMIC
Test circuit board:
CGY 180
_________________________________________________________________________________________________________
The following impedances of the bias circuit should be seen from the CGY180 ports:
= 0.97 / 96 8 = 0.96 / 142 9 = 0.94 / -134 11
CGY 180
89 11
89
11
(values measured at f=1.89 GHz)
Size: 20 x 25 mm; In, Out: 50 Ohm Principal circuit:
Vg
1nF 1nF
+Vd
4.7uF 1nF
68pF 1nF
VG (2)
6.8pF
VD1 (8)
1.5pF
VD2
(9)
VD3 (11)
VTR
VTR (1)
Control circuit
In
Pin (7)
Out
Pout (11)
CGY180
GND1 (6) GND2 (3,4,5,10)
Siemens Aktiengesellschaft
pg. 11/15
21.02.96 HL EH PD 21
GaAs MMIC
Output power at different temperatures*
CGY 180
_________________________________________________________________________________________________________
30 28 26
Pout [dBm]
24 22 Pout(-20C) [dBm] 20 18 16 -12 -10 -8 -6 -4 -2 0 2 4 Pout(+20C) [dBm] Pout(+70C) [dBm]
Pin [dBm]
Power added efficiency at different temperatures*
40 35 30 25
PAE [%]
20 15 10 5 0 -12 -10 -8 -6 -4 -2 0 2 4 PAE(-20C) [%] PAE(+20C) [%] PAE(+70C) [%]
Pin [dBm]
*)measured with a CGY180 test circuit board (see page 11) VD=3V, VG=-4V, VTR=0V
Siemens Aktiengesellschaft
pg. 12/15
21.02.96 HL EH PD 21
GaAs MMIC
Emissions due to modulation:*
CGY 180
_________________________________________________________________________________________________________
Spectrum of amplified DECT signal
Measurement was done with the following equipment:
Trigger negative supply voltage
-4V
Pulsed Power Supply
VD=3V pulsed with a duty cycle of 10% ton=1ms VG VD gate delay 3s gate length 1ms
DECT Signal Generator
ROHDE&SCHWARZ SME03
Pin=0dBm IN
CGY180
VTR
OUT
Spectrum Analyzer
HP 8561E
*)measured with a CGY180 test circuit board (see page 11) VD=3V, VG=-4V, VTR=0V
Siemens Aktiengesellschaft
pg. 13/15
21.02.96 HL EH PD 21
GaAs MMIC
APPLICATION - HINTS
1. CW - capability of the CGY180 1.1 VD = 3 V
CGY 180
_________________________________________________________________________________________________________
Proving the possibility of CW - operations there must be known the total power dissipation of the device. This value can be found as a function of the temperature in the datasheet (page 8/14). The CGY180 has a maximum total power dissipation of Ptot = 2.3 W. As an example we take the operating point with a drain voltage VD = 3 V. The possible ratings of the drain current adjusted by the internal current control of the CGY180 ( VG = -4 V, VTR = 0 V ) are shown in the following table. Min. ID / mA 325 Typ. 450 Max. 650
At worst case you see a current of ID = 650 mA. So the maximum DC - power can be calculated to
PDC = VD I D = 1.95W
This value is smaller than 2.3W and CW - operation is possible. 1.2 VD = 4 V If you want to use the whole capability of the CGY180, you must consider the power added efficiency PAE. You want to take an operation point of VD = 4 V. Now there will be a higher current than at VD = 3 V. We assume a current of ID = 650 mA and a PAE = 35 %. With these values the DC - power is PDC = 2.6 W. That exeeds the PtotDC of 2.3 W. Decoupling RF-Power from the CGY180 results in less power dissipation of the device. This is directly correlated with the achieved PAE. To calculate total power dissipation use the formula:
PtotDC = PDC (1 - PAE )
.
Ptot for the used operating point shown above will be
Ptot = 2. 6W (1 - 0.35) = 1. 69W
.
It is possible to use the CGY180 for CW - operations up to a drain voltage of VD = 4 V, if at the same time a PAE of 35% is achieved. The calculation can be done for any operating point to prove the capability of CW - operation.
Siemens Aktiengesellschaft pg. 14/15 21.02.96 HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
2. Not using the internal current control If you don' t want to use the internal current control, it is recommended to connect the negative supply voltage at pin 1 ( VTR ) instead of pin 2 ( VG ). 3. Biasing and use considerations In all cases, RF input power should not be applied until the bias voltages have been applied, and RF input power should be turned off prior to removing the bias voltages. Bias application should be timed such that gate voltage ( VGG ) is always applied before the drain voltages ( VDD ), and when returning to the standby mode, gate voltage should only be removed once the drain voltages have been removed.
Siemens Aktiengesellschaft
pg. 15/15
21.02.96 HL EH PD 21


▲Up To Search▲   

 
Price & Availability of Q68000-A8882

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X